

Reimagining Cancer Treatment

Syndax Investor Meeting American Society of Hematology Meeting December 11, 2023

Forward-looking statements disclosure

This presentation contains forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995. Words such as "may," "will," "expect," "plan," "anticipate" and similar expressions (as well as other words or expressions referencing future events, progress, timing or circumstances) are intended to identify forward-looking statements. All statements other than statements of historical facts contained in this presentation, including statements regarding future operations of Syndax Pharmaceuticals, Inc. ("Syndax" or the "Company"), including strategy and plans, the progress, timing, clinical development and scope of clinical trials and the reporting of clinical data for Syndax's product candidates, and the progress of regulatory submissions and approvals and subsequent commercialization and the potential use of Syndax's product candidates to treat various cancer indications and fibrotic diseases are forward-looking statements. Many factors may cause differences between current expectations and actual results, including unexpected safety or efficacy data observed during preclinical studies or clinical trials, clinical site activation rates or clinical trial enrollment rates that are lower than expected; failure of our collaborators to support or advance collaborations or product candidates and unexpected litigation or other disputes. Moreover, Syndax operates in a very competitive and rapidly changing environment. Other factors that may cause our actual results to differ from current expectations are discussed in Syndax's filings with the U.S. Securities and Exchange Commission, including the "Risk Factors" sections contained therein. New risks emerge from time to time. It is not possible for Syndax's management to predict all risks, nor can Syndax assess the impact of all factors on its business or the extent to which any factor, or combination of factors, may cause actual results to differ materially from those contained in any forward-looking statement. In light of these risks, uncertainties and assumptions, the forward-looking events and circumstances discussed in this presentation may not occur and actual results could differ materially and adversely from those anticipated or implied. Except as required by law, neither Syndax nor any other person assumes responsibility for the accuracy and completeness of the forward- looking statements. Syndax undertakes no obligation to update publicly any forward-looking statements for any reason after the date of this presentation to conform these statements to actual results or to changes in Syndax's expectations.

The trademarks included in this presentation are the property of the owners thereof and are used for reference purposes only.

Welcome and Introduction to Syndax

Michael Metzger Chief Executive Officer, Syndax

Syndax: An oncology company with 2 near-commercial heme assets

Two clinically potential first- and best-in-class hematology assets

- **Revumenib**, novel menin inhibitor, targeting KMT2Ar and mNPM1 acute leukemia
- Axatilimab, first CSF-1R mAb targeting cGVHD

Revumenib is on track for NDA submission by year-end under RTOR

 Potential to access ~\$2B market opportunity in R/R KMT2Ar and mNPM1 acute leukemia; opportunity to access larger markets with expansion into frontline

Axatilimab is on track for BLA submission by year-end with partner Incyte

 ~\$2B market opportunity for 3L+ cGVHD; opportunity to access larger markets with expansion into earlier lines

Strong IP supporting both assets with LOE to 2040

ASH 2023 Plenary and Late-Breaker

Safety and Efficacy of Axatilimab at 3 Different Doses in Patients with Chronic Graft-Versus-Host Disease (AGAVE-201)

Session: Plenary Scientific

Revumenib Monotherapy in Patients with Relapsed/Refractory *KMT2Ar* Acute Leukemia: Topline Efficacy and Safety Results from the Pivotal Augment-101 Phase 2 Study

Session: Late-Breaking Abstracts

Axatilimab and revumenib at ASH

Syndax goals at the American Society of Hematology 2023 Annual Meeting

Showcase axatilimab and revumenib as potential first- and best-in-class agents with potential as monotherapy and in combination

Educate the physician community ahead of expected 2024 launches

Generate excitement for ongoing and upcoming trials

Today's guest speakers

Axatilimab (cGVHD)

Syndax 🌮

Vedran Radojcic, MD

Senior Medical Director and Clinical Leader for Axatilimab, Syndax Pharmaceuticals

Memorial Sloan Kettering Cancer Center **(‡)**

Revumenib (acute leukemia)

THE UNIVERSITY OF TEXAS **MD**Anderson **Cancer** Center Making Cancer History®

Ghayas Issa, MD

Assistant Professor, Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center

Daniel Wolff, MD

Professor of Hematology, Department of Internal Medicine III of the University of Regensburg

Joshua Zeidner, MD

Eytan Stein, MD

Chief, Leukemia Service,

Director, Program for Drug

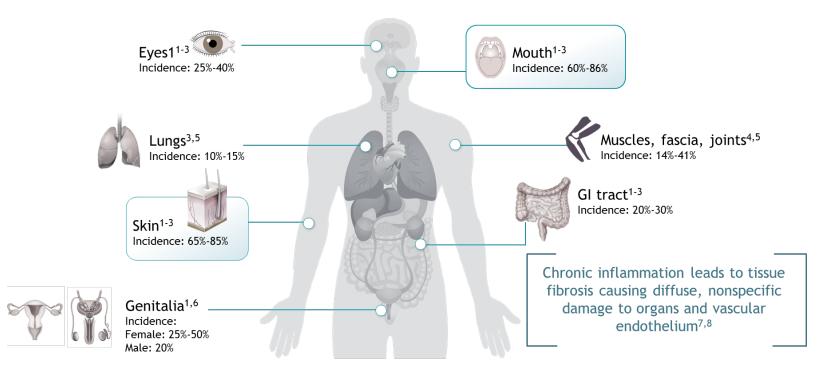
Development in Leukemia,

Memorial Sloan Kettering

Cancer Center

Associate Professor of Medicine, Chief, Leukemia Research, University of North Carolina, Lineberger **Comprehensive Cancer Center**

Neerav Shukla, MD


Chief, Pediatric Translational Medicine Service at Memorial **Sloan Kettering Cancer Center**

Memorial Sloan Kettering Cancer Center

Chronic GVHD and Axatilimab Overview

Dr. Vedran Radojcic Senior Medical Director and Clinical Leader for Axatilimab, Syndax Pharmaceuticals

Multiorgan involvement in cGVHD drives morbidity and QOL impairment

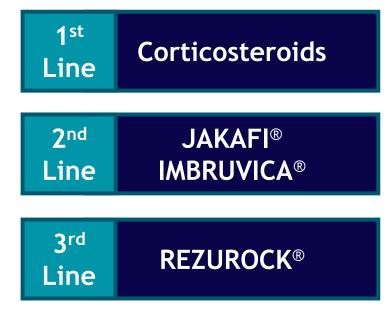
1. Jagasia MH, et al. *Biol Blood Marrow Transplant*. 2015;21(3):389-401. 2. Vigorito AC, et al. *Blood*. 2009;114(3):702-708. 3. Lee SJ, et al. *Blood*. 2002;100(2):406-414. 4. Vukic T, et al. *Croat Med J*. 2016;57(3):266-275. 5. Inamoto Y, et al. *Arthritis Rheumatol*. 2014;66(4):1044-1052. 6. Hamilton BK, et al. *Bone Marrow Transplant*. 2017;52(6):803-810. 7. Blazar BR, et al. *Nat Rev Immunol*. 2012;12(6):443-458. 8. Cooke KR, et al. *Biol Blood Marrow Transplant*. 2017;23(2):211-234. 8. Arai et al. *Biol Blood Marrow Transplant*. 2015;21:266-274. 9. Arora et al. *Biol Blood Marrow Transplant*. 2016;22:449-455. 10. Velickovic et al. *Ther Adv Hematol*. 2020;11:1-18.

Syndax 🌮

- Chronic GVHD effects up to 50% of allo-HSCT recipients⁸⁻¹⁰
- Complete responses are rare and many organs respond poorly to available therapy
- Patients need prolonged treatment to control disease burden

Significant unmet need remains across all lines of therapy

If approved, axatilimab will provide a differentiated mechanism from currently approved agents


Corticosteroids are the cornerstone of therapy

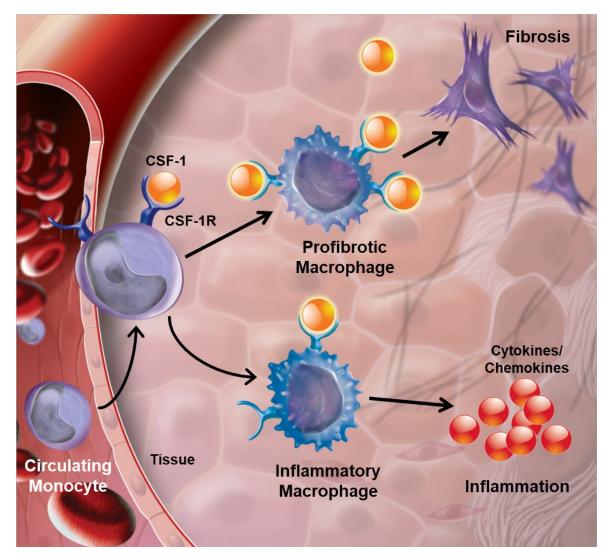
• ~60% of patients develop corticosteroid resistance or dependence

Currently approved agents are small molecules targeting intracellular signaling to impact the disease

Approved therapies after steroid failure (ibrutinib, belumosudil, ruxolitinib) are not curative²

Current Standard of Care¹

Despite recent approvals, >50% of patients receive \geq 3 therapy lines with decreasing efficacy² so there remains a significant need for new medications

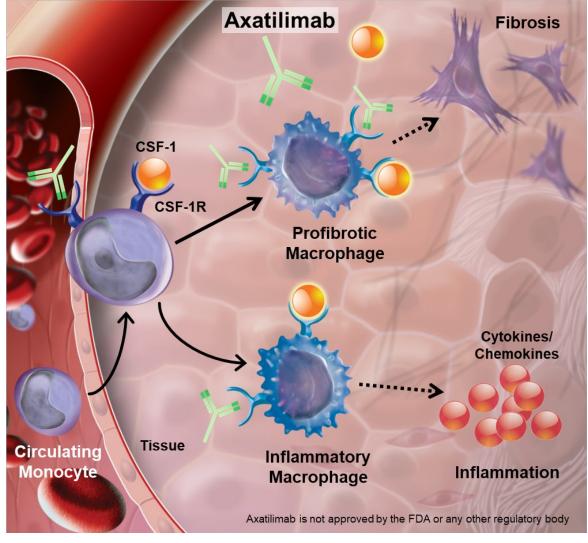


1. U.S. Regulatory approvals in cGVHD: Imbruvica[®] - August 2017, Rezurock[®] - July 2021, Jakafi[®] - September 2021; 2. Lee et al. *Biol Blood Marrow Transplant*. 2018;24:555-562. 2. Wolff, D.,. *et al.* Steroid-r efractory chronic graft-versus-host disease: treatment options and patient management. *Bone Marrow Transplant* **56**, 2079-2087 (2021).

CSF-1R: The key regulator of macrophage and monocyte functions in cGVHD

Targeting monocyte-derived macrophages may control fibrosis and inflammation

- CSF-1/CSF-1R pathway regulates monocyte proliferation and macrophage differentiation and activity¹
- CSF-1R signaling is critical for development and function of alternatively polarized macrophages which can exert profibrotic and inflammatory functions
- In cGVHD monocytes and macrophages can mediate inflammation and fibrosis^{2,3,4}

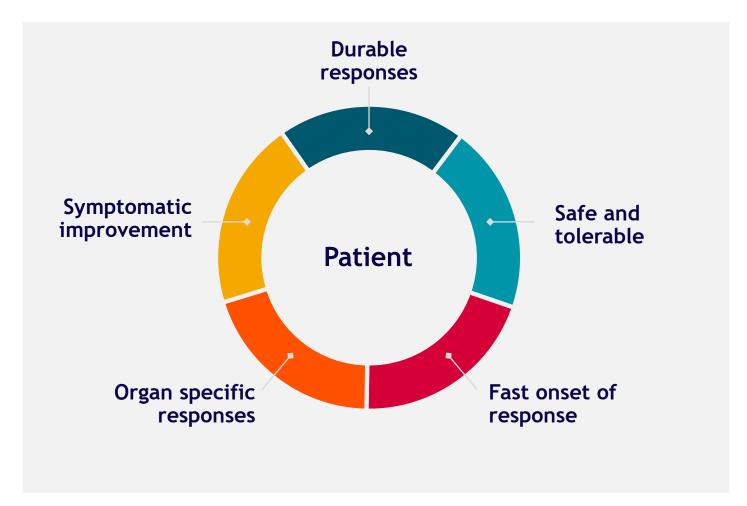

1. Hume and Macdonald. *Blood* 2012;119:1810-1820. 2. Alexander et al. *J Clin Invest* 2014;124:4266-4280. 3. MacDonald et al. *Blood*. 2017;129:13-21. 4. Jardine et al. *J Clin Invest*. 2020;130:4574-4586.

Axatilimab targets key cGVHD pathology mediators

Developing a differentiated, practicechanging intervention in cGVHD

- Axatilimab is a monoclonal antibody that targets CSF-1R on monocytes and macrophages¹
- Axatilimab inhibits ligand-dependent monocyte and macrophage differentiation and function
- Favorable safety and tolerability profile with promising results in Ph1/2 trial in recurrent/ refractory cGVHD, with an ORR of 67%¹

Inflammation and fibrosis drive cGVHD

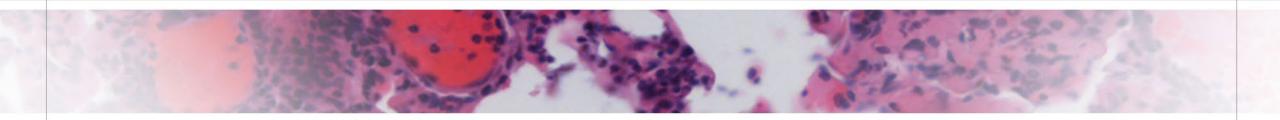


Through CSF-1R inhibition, axatilimab is uniquely positioned to address both hallmarks of cGVHD—inflammation and fibrosis

Currently approved agents inadequately address both inflammation and fibrosis, potentially resulting in suboptimal responses

Syndax >> cGVHD, Chronic graft-versus-host disease; CSF-1R, Colony-stimulating factor 1 receptor

Axatilimab is positioned to address what physicians and patients are seeking in a new cGVHD therapy



Axatilimab Key Attributes

- Demonstrates compelling clinical profile
- Unique MOA in cGVHD
- Benefits in fibrotic and inflammatory components
- Consistent results across all key patient subsets with responses in all organ systems

American Society of Hematology Helping hematologists conquer blood diseases worldwide

Safety and Efficacy of Axatilimab at 3 Different Doses in Patients with Chronic Graft-Versus-Host Disease (AGAVE-201)

Daniel Wolff*, MD, PhD; Corey Cutler,* MD, MPH, FRCPC; Stephanie J. Lee, MD, MPH; Iskra Pusic, MD; Henrique Bittencourt MD, PhD; Jennifer White MD, MSc, FRCPC; Mehdi Hamadani MD; Sally Arai, MD; Amandeep Salhotra, MD; Jose A. Perez-Simon, MD; Amin Alousi, MD; Hannah Choe, MD; Mi Kwon, MD; Arancha Bermúdez, MD; Inho Kim, MD, PhD; Gerard Socie, MD, PhD; Vedran Radojcic, MD; Timothy O'Toole, MS; Chuan Tian, PhD; Peter Ordentlich, PhD; Zachariah DeFilipp,[†] MD; and Carrie L. Kitko,[†] MD

*/†Authors contributed equally to this work.

ASH Plenary Session, December 10, 2023

AGAVE-201: Study Design and Methods

Key eligibility criteria

- Age ≥2 years with ≥2 prior lines of systemic therapy
- Active cGVHD defined per 2014 NIH Consensus Criteria¹
- Concomitant use of corticosteroids (65%), calcineurin inhibitors (28%), or mTOR inhibitors (12%) was allowed but not required
- No additional systemic cGVHD therapy was allowed

Primary endpoint

- ORR in the first 6 cycles as defined by NIH 2014 Consensus Criteria¹
- Endpoint was met if lower bound of 95% CI >30%

Secondary and exploratory endpoints

- Clinically meaningful improvement in mLSS (≥7 points)
- Organ-specific response rates, DOR, FFS, OS
- Safety

DOR, duration of response; FFS, failure-free survival; mLSS, modified Lee Symptom Scale; mTOR, mammalian target of rapamycin; NIH, National Institutes of Health; OS, overall survival.

Baseline Characteristics (ITT Population)

Patient characteristic	Total cohort (N=241)
Age, median (min, max), y	53 (7, 81)
Sex, male, n (%)	151 (63)
Race, White, n (%)	200 (83)
Time from cGVHD diagnosis to randomization, median (max), y	4 (18)
Patients with severe disease, n (%)	192 (80)
Number of organs involved at baseline, median (max)	4 (8)
≥ 4 organs involved, n (%)	130 (54)
Number of prior systemic cGVHD therapies, median (max)	4 (15)
Refractory to last prior cGVHD treatment, ^a n (%)	132 (55)
Prior ruxolitinib, ibrutinib, and/or belumosudil, n (%)	204 (85)
Prior ruxolitinib, n (%)	179 (74)
Prior ibrutinib, n (%)	75 (31)
Prior belumosudil, n (%)	56 (23)

Patient characteristics were well balanced among cohorts

American Society of Hematology

ITT, intention to treat. ^aDefined as patients with a best response to last prior treatment of no change or progressive disease reported at baseline.

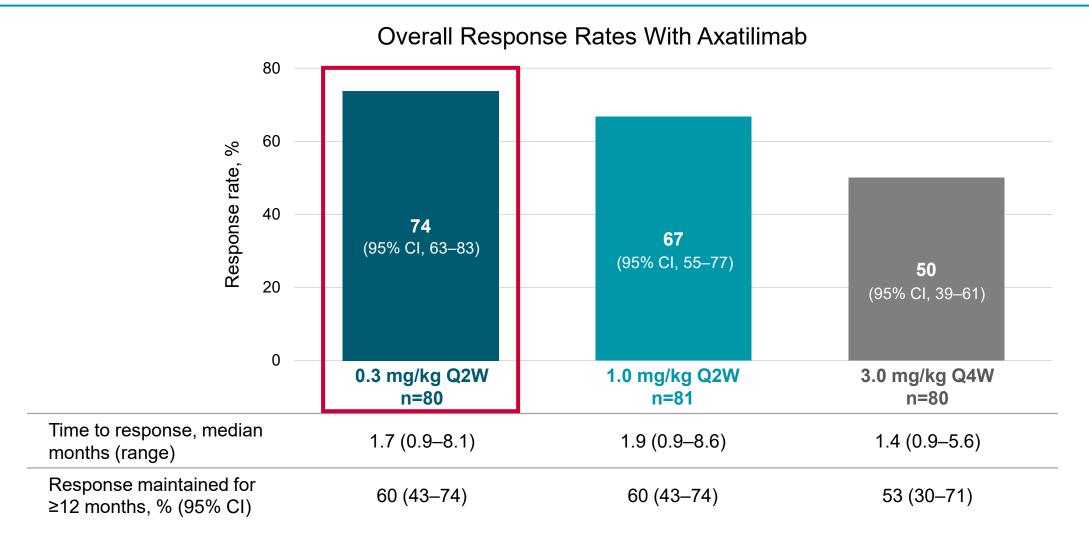
AGAVE-201 positive results observed in a heavily pretreated, late stage cGVHD population

Population (ITT)	ROCKSTAR N=132	AGAVE-201 N=241
Age median (min, max), years	56 (21, 77)	53 (7, 81)
Median time since cGVHD diagnosis	25.3 months	48 months
≥ 4 organs involved	52%	54%
% Patients with lung manifestations	36%	45%
% patients with NIH severe cGVHD	67%	80%
Median prior therapies	3	4
≥ 4 prior lines of treatment	49%	65%
Prior ruxolitinib	29%	74%
Prior ibrutinib	34%	31%
Prior belumosudil	N/A	23%

AGAVE-201 Differentiation

Significantly longer time since diagnosis

More severe cGVHD


More reflective of realworld treatment

Axatilimab AGAVE-201 Data

Dr. Daniel Wolff

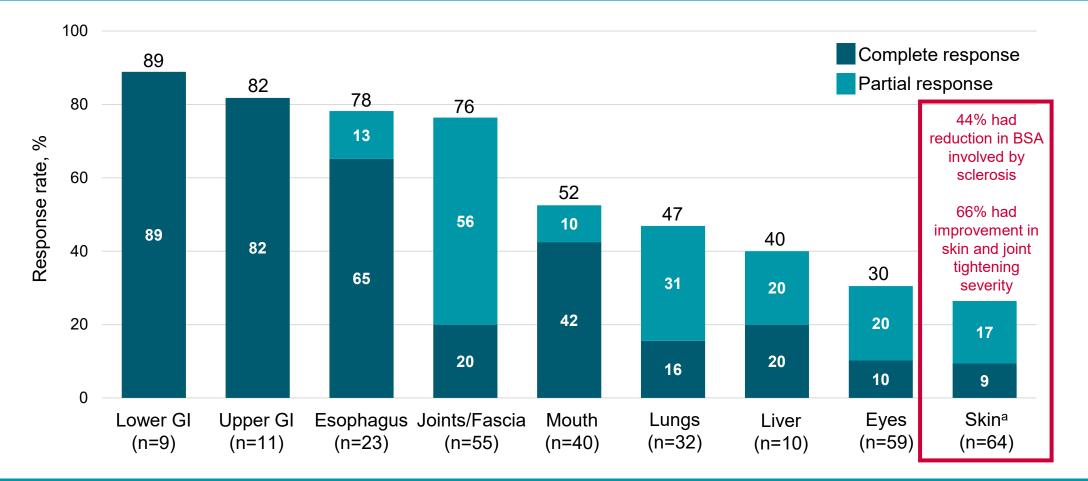
Professor of Hematology, Department of Internal Medicine III of the University of Regensburg

Primary Efficacy Endpoint^a Met in All Cohorts

Q2W, every 2 weeks; Q4W, every 4 weeks.

^aPrimary endpoint was overall response rate in the first 6 cycles as defined by NIH 2014 Consensus Criteria.¹

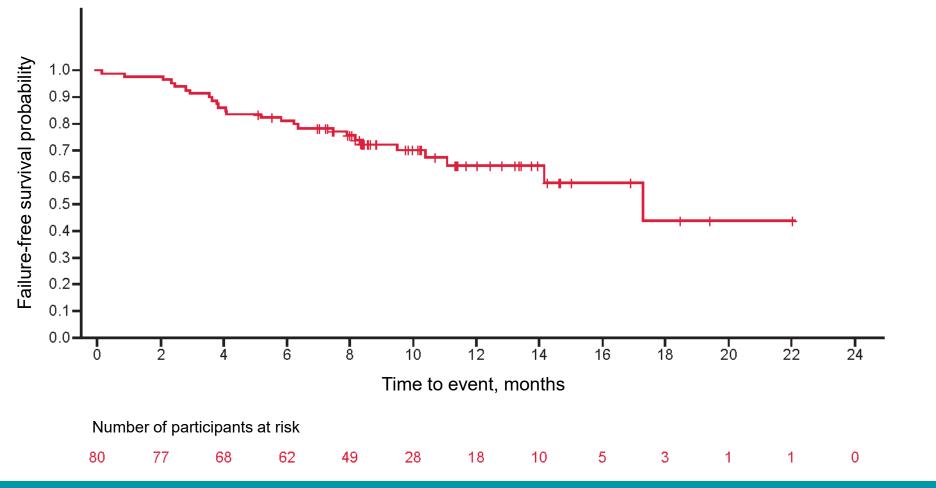
1. Lee at al. Biol Blood Marrow Transplant. 2015;21:984-999.


Efficacy Across Subgroups in 0.3 mg/kg Q2W

Subgroup	No. of participants	Primary endpoint		Objective response rate (95% Cl)
Overall	80		F	74 (63-83)
Age group <17 years ≥17 and <65 years ≥65 years	4 55 21			→ 75 (19-99) 78 (65-88) 62 (38-82)
Number of lines of prior therapy	26			EQ (27 77)
<4 4-6 >6	20 39 15			58 (37-77) 80 (64-91) ⊣ 87 (60-98)
Prior ibrutinib Yes No	27 53			82 (62-94) 70 (56-82)
Prior ruxolitinib Yes No	57 23	F		79 (66-89) 61 (39-80)
Prior belumosudil Yes No	16 64			75 (48-93) 74 (61-84)
Severity of cGVHD at screening Mild/Moderate Severe	17 63	+		65 (38-86) 76 (64-86)
Number of organs involved at base ≤4 >4	line 52 28			68 (53-80) 86 (67-96)
	0 10 2	20 30 40 Obje	0 50 60 70 80 90 ctive response, %	100

High response rates (≥75%) were seen in patients who received prior FDA-approved therapies

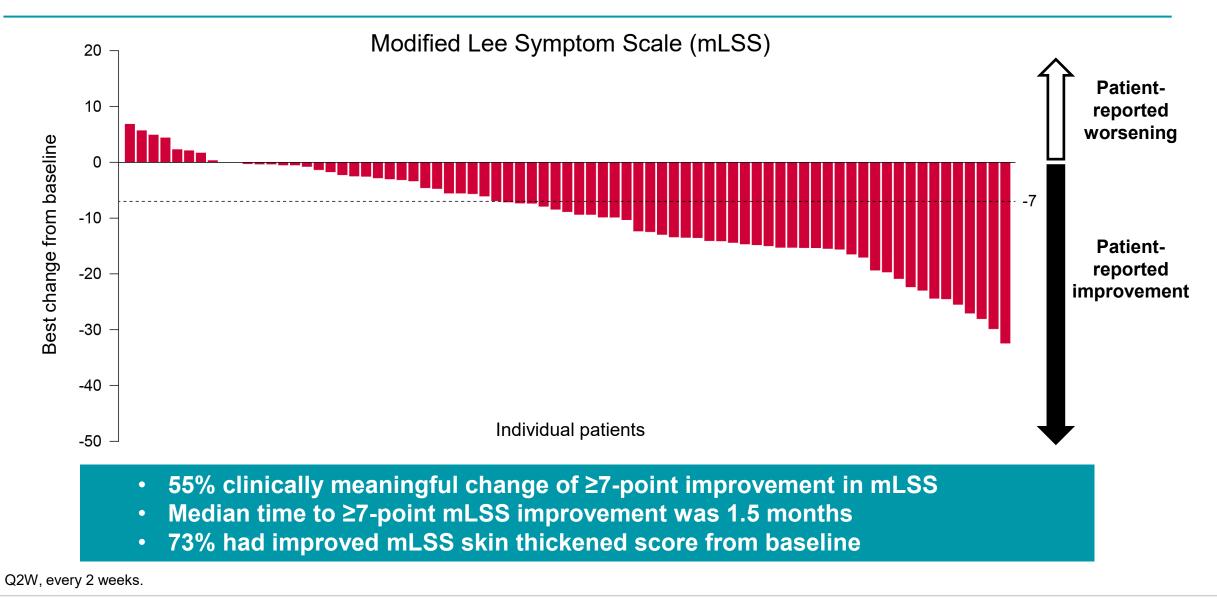
Q2W, every 2 weeks.


Organ Responses in 0.3 mg/kg Q2W

Responses were notable in fibrosis-dominated organs, including esophagus (78%), joints and fascia (76%), lung (47%), and skin (27%)

BSA; body surface area; GI, gastrointestinal; Q2W, every 2 weeks. ^aDue to rounding, complete response and partial response numbers may not add up to total response rate.

Failure-free Survival^a in 0.3 mg/kg Q2W



Median FFS was 17.3 (95% CI, 14.2–NE) months

NE, not estimable; Q2W, every 2 weeks.

^aDefined as time from randomization to death or new systemic cGVHD therapy, where axatilimab dose increase is not considered new therapy.

Patient-Reported Symptom Burden Change in 0.3 mg/kg Q2W

American Society of Hematology

Axatilimab Safety Profile

	Axatilimab 0.3 mg/kg Q2W n=79	Axatilimab 1.0 mg/kg Q2W n=81	Axatilimab 3.0 mg/kg Q4W n=79
Axatilimab dose changes owing to AE, n (%)			
Discontinuation	5 (6.3)	18 (22.2)	14 (17.7)
Dose decrease	5 (6.3)	6 (7.4)	13 (16.5)
Any grade AE in ≥20% of total patients			
Fatigue	18 (22.8)	16 (19.8)	21 (26.6)
Headache	15 (19.0)	14 (17.3)	16 (20.3)
Periorbital edema	2 (2.5)	19 (23.5)	23 (29.1)
COVID-19	13 (16.5)	18 (22.2)	11 (13.9)
Laboratory-based abnormalities			
AST increase	11 (13.9)	31 (38.3)	43 (54.4)
CPK increase	9 (11.4)	26 (32.1)	49 (62.0)
Lipase increased	9 (11.4)	21 (25.9)	39 (49.4)
Lactate dehydrogenase increased	11 (13.9)	22 (27.2)	32 (40.5)
ALT increase	10 (12.7)	18 (22.2)	31(39.2)
Amylase increase	3 (3.8)	10 (12.3)	34 (43.0)
At least 1 related Grade ≥3 AE, n (%)	14 (17.7)	28 (34.6)	37 (46.8)
Fatal AE	1 (1.3) ^a	7 (8.6) ^b	6 (7.6) ^c

S American Society *of* Hematology

AE, adverse event; ALT, alanine aminotransferase; AST, aspartate aminotransferase; CPK, blood creatine kinase; Q2W, every 2 weeks; Q4W, every 4 weeks. ^aDyspnea. ^bSudden cardiac death, bronchopulmonary aspergillosis, pneumonia (n=2), sepsis, leukemia recurrent, respiratory failure. ^cLeukemia recurrent, dyspnea, respiratory failure, shock hemorrhagic, neutropenic sepsis, pneumonia.

Conclusion: Axatilimab 0.3 mg/kg Q2W is highly effective in patients with recurrent/refractory cGVHD

- Responses documented in all organs and patient subgroups, including those with fibrotic cGVHD manifestations
 - Complete responses observed in all organ systems including the most difficult to treat organs such as lung

Rapid and significant symptom burden reduction reported by 85% of patients

- Clinical responses in symptom reduction occurred rapidly at a median of 1.5 months
- Patient improvement and clinical response occurred simultaneously

Conclusion: Axatilimab 0.3 mg/kg Q2W is well tolerated in patients with recurrent/refractory cGVHD

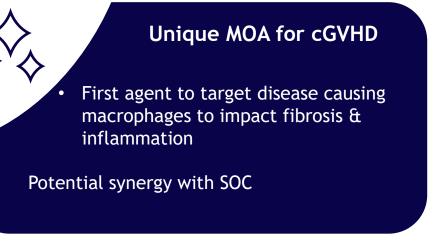
No unexpected safety concerns

- AEs consistent with vulnerabilities of cGHVD patients
- Mostly low grade, reversible, and dose dependent

Potential to benefit patients alone or in combination with SOC therapies already available

Robust, well powered clinical trial

• Real world population with a low steroid dose, no concomitant use for cGVHD


The recommended axatilimab dose for future trials in cGVHD is 0.3 mg/kg q2wks

• Phase 2 Jakafi[®] combo and Phase 3 steroid combo trials to begin in mid-2024

Axatilimab Close and Q&A

Michael Metzger Chief Executive Officer, Syndax

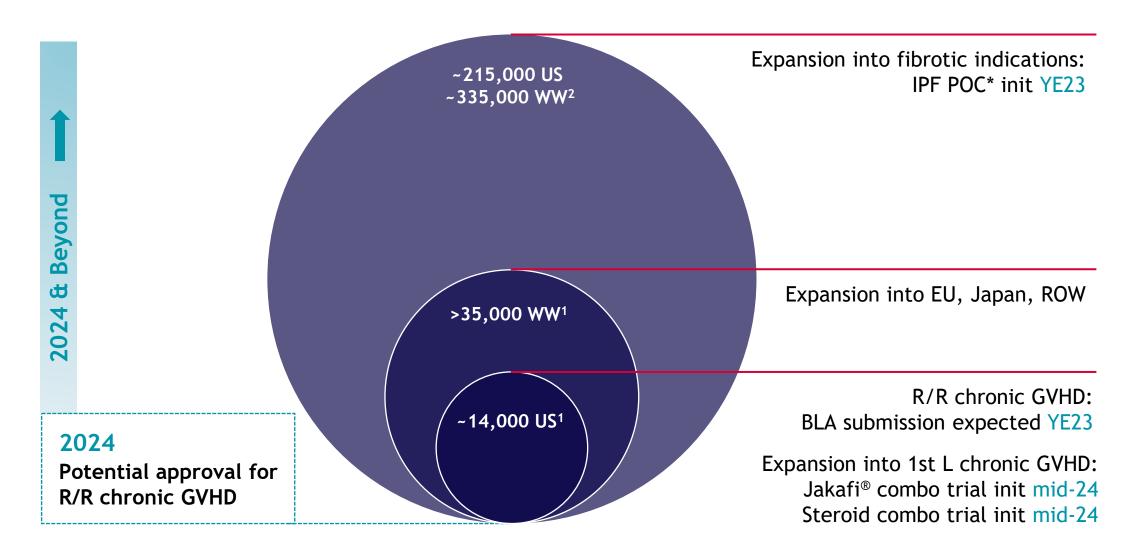
Axatilimab has the potential to be a differentiated treatment option for **cGHVD**

٠

High and durable responses

- 74% ORR at 0.3 mg/kg
- 60% of patients treated at 0.3 mg/kg remained in response at 12 months

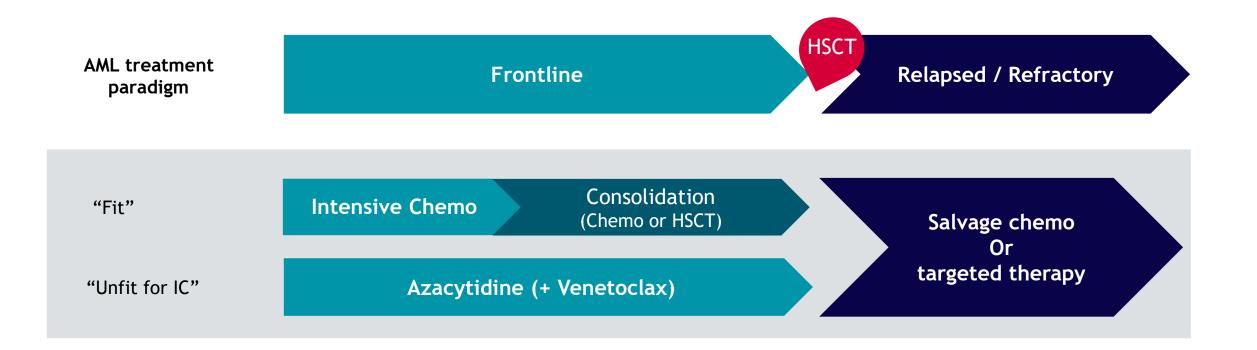
Well tolerated supporting broad use


- Low rate of SAEs and discontinuations at 0.3 mg/kg
- Antibody reduces potential for DDIs vs small molecule competitors

Enrolled population reflects real world

- Efficacy results observed in patients following treatment with current SOC
- Option to switch to Q4W dose at 6 months

Axatilimab has the potential to expand into additional high value indications and new geographies

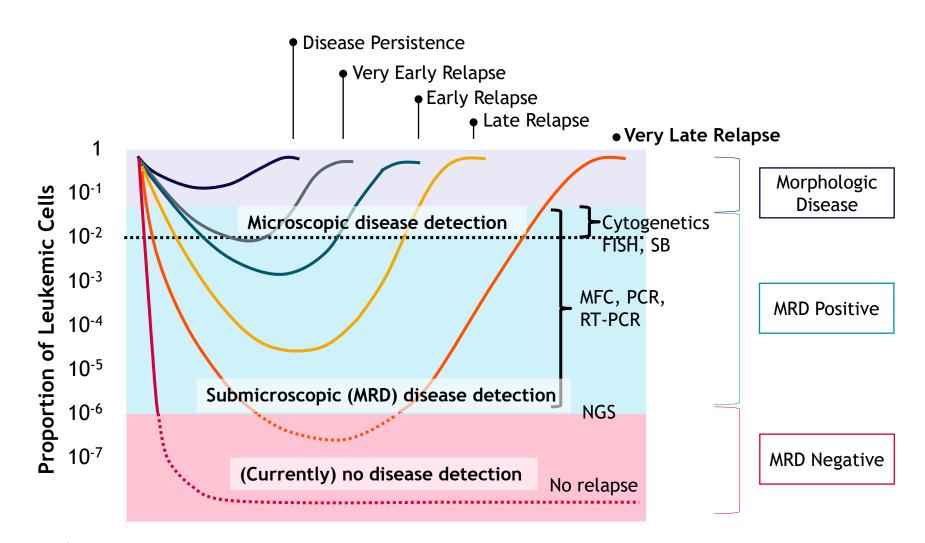


Acute Leukemia Overview

Dr. Eytan Stein

Chief, Leukemia Service, Director, Program for Drug Development in Leukemia, Memorial Sloan Kettering Cancer Center

AML treatment paradigm



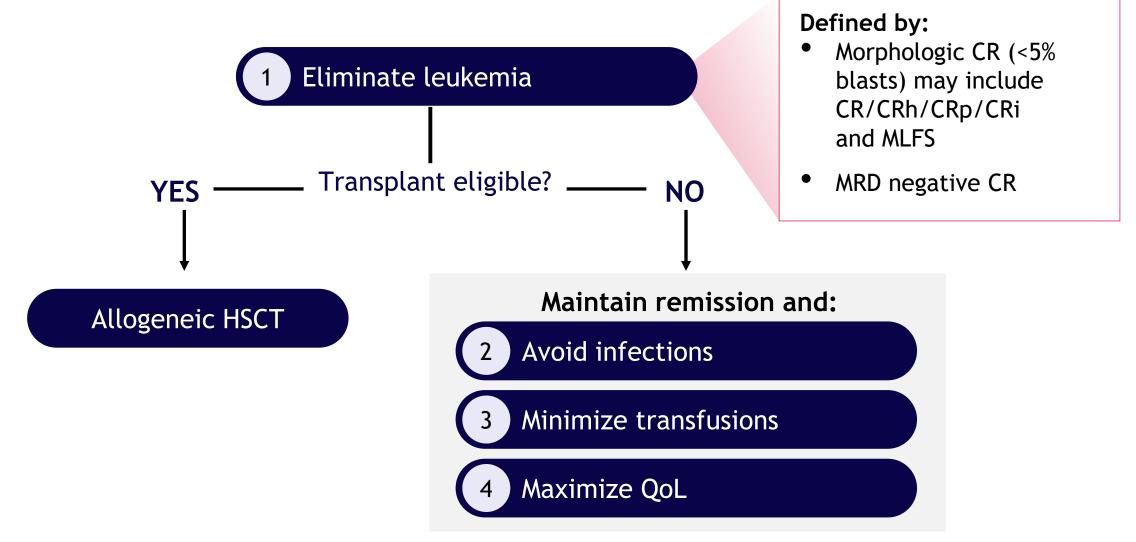
Treatment response criteria in AML: Tumor clearance equivalent across MLFS and CRc

Response	Tumor	Platelets recovered	Neutrophils recovered	ORR	CRc	CR/CRh
CR	< 5%	Yes Yes		\checkmark	\checkmark	\checkmark
CRh	< 5%	Half normal levels Half normal levels		\checkmark	\checkmark	\checkmark
CRp	< 5%	No	Yes	\checkmark	\checkmark	
CRi	< 5%	Either has recovered		\checkmark	\checkmark	
MLFS	< 5%	Neither has recovered		\checkmark		
PR	5-25% and a ≥50% reduction	Yes	Yes	\checkmark		
No response	> 5%	No	No			
Non-evaluable Lack an adequate BM response evaluation						

Syndax 2022 ELN recommendations for the management of AML in adults (aml-hub.com); ORR, Overall response rate; CRc, Composite complete remission; ANC, absolute neutrophil count; BM, bone marrow; CR, complete remission; CRh, CR with partial hematologic recovery; CRi, CR with incomplete hematologic recovery; MLFS, morphologic leukemia-free state; PR, partial remission.

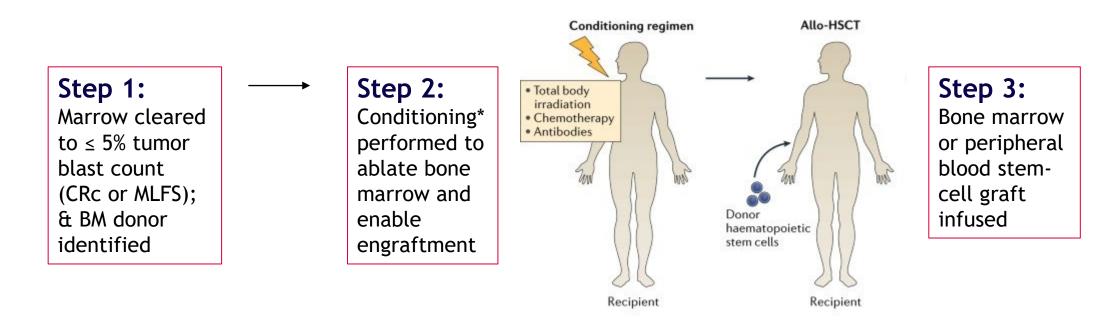
Measurable residual disease has prognostic implications for clinical practice

MRD Definition: Residual leukemia not detected by morphology (<5% blasts)


Treatment goals for patients with relapsed/refractory acute leukemia

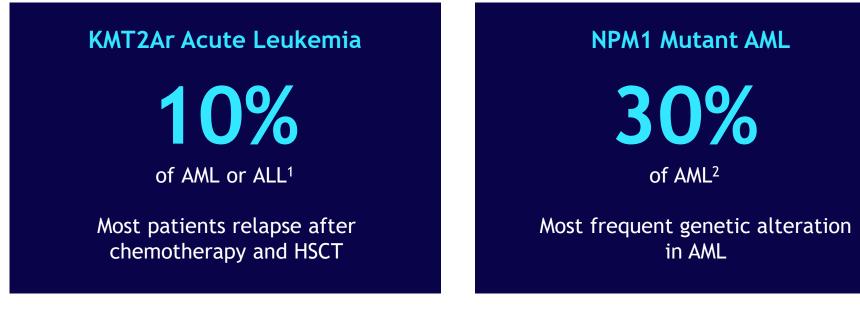
Defined by:

- Morphologic CR (<5% blasts) may include CR/CRh/CRp/CRi and MLFS
- MRD negative CR


Treatment goals for patients with relapsed/refractory acute leukemia

НЅСТ

Goals and rationale for transplantation

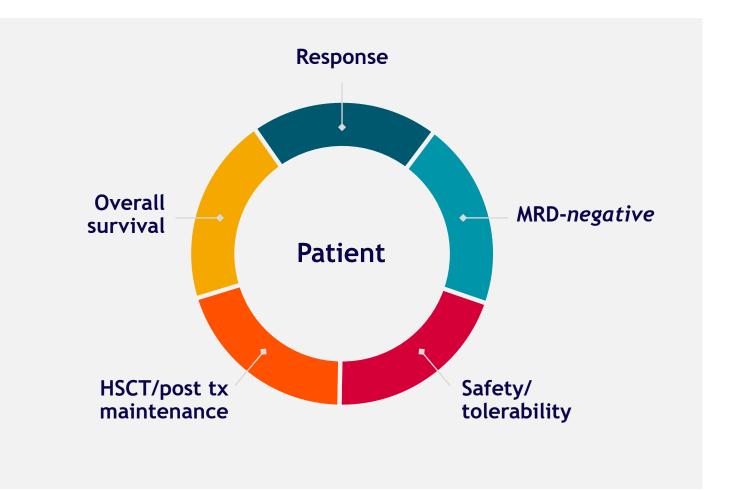

Allogeneic HSCT is the only known method to completely cure AML

Potential complications:

- **Pancytopenia**, gastrointestinal toxicities, infections, and organ dysfunction (conditioning regimens can be more aggressive than intensive chemotherapy)
- Development of GVHD (acute and/or chronic)

Despite recent advances in AML and ALL, treatment options are needed for patients with KMT2Ar and mNPM1 acute leukemias

Median overall survival in 3rd line AML^{1,3}


1 mo	2 mo	3 mo	4 mo	5 mo	6 mo
mNPM1					
KMT2Ar					_

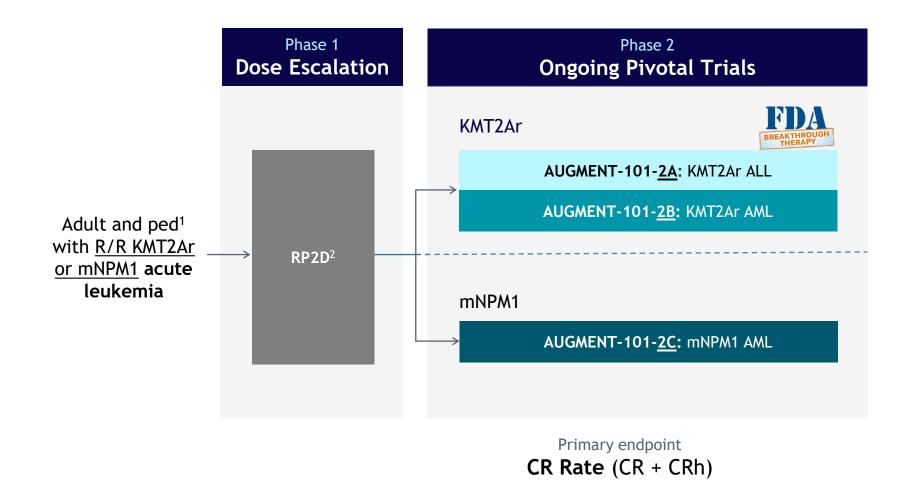
1) Issa, G. et al. (2021). Predictors of outcomes in adults with acute myeloid leukemia and KMT2A rearrangements. 2). Falini, B. et al, NPM1-mutated acute myeloid leukemia: from bench to bedside. Blood (2020) 136 (15) 3) Issa G. et al. Clinical outcomes associated with NPM1 mutations in patients with relapsed or refractory AML. Blood Adv. 2023 Mar 28;7(6); OS, Overall response

Revumenib has demonstrated positive clinical results in both KMT2Ar and mNPM1 acute leukemia populations

Revumenib is positioned to deliver on key metrics that would address the needs of patients

Revumenib Key Attributes

- Demonstrates encouraging clinical profile
- Overall treatment profile that enables R/R to receive HSCT, and post-Tx maintenance
- Convenient route of administration


AUGMENT-101 and SAVE Trial Results

Dr. Ghayas Issa

Assistant Professor, Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center

Pivotal AUGMENT-101 in KMT2Ar and mNPM1 acute leukemias trial design

Syndax 🌮

Patients taken to HSCT can restart treatment with revumenib post-transplant; Abbreviations: KMT2Ar, KMT2A rearrangement, mNPM1, mutated nucleophosmin ¹ Allows patients ≥30 days of age ² 2276mg q12h or 163mg q12h w/ strong CYP3A4 inhibitor

Demographics and design of KMT2Ar patients enrolled into AUGMENT-101 Phase 1 trial

ASH23 #2907

	Phase 1 Dose Escalation
Adult and ped ¹ with <u>R/R KMT2Ar</u> acute leukemia (including AML, ALL, MPAL)	→ RP2D^
	^ pts assigned to 1 of 6 cohorts to identify RP2D for concomitant use of mod or strong or no CYP3A4i

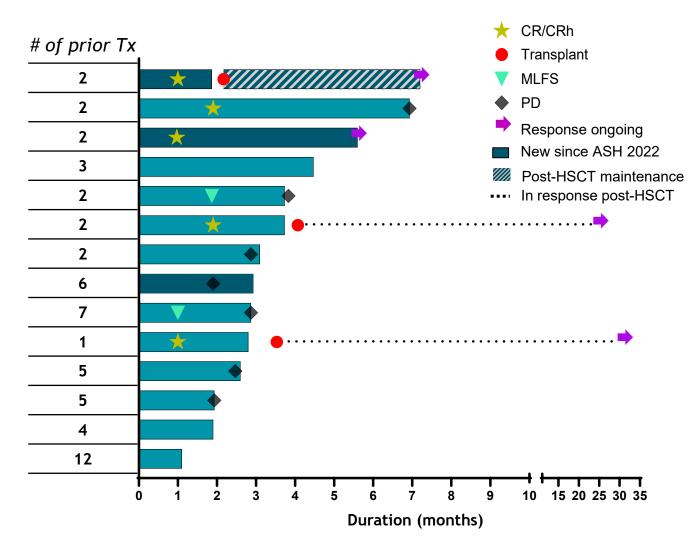
Demographics		Phase 1 KMT2	Ar population		
Parameter	Adult AML (n=51)	ALL / Other₀ (n=15)	Peds (n=15)	Efficacy <i>KMT2Ar</i> (n=77)	Safety population (n=132)
Median age, y (range)	40.0 (19.0-79.0)	34.0 (1.0-74.0)	9.0 (1.0-16.0)	33.0 (1.0-79.0)	41.0 (0.8-82.0)
Sex, n (%)					
Female	30 (58.8)	10 (66.7)	10 (66.7)	46 (59.7)	70 (53.0)
Ethnicity, n (%)					
Hispanic/Latino	12 (23.5)	1 (6.7)	9 (60.0)	21 (27.3)	31 (23.5)
Not Hispanic/Latino	34 (66.7)	13 (86.7)	6 (40.0)	50 (64.9)	95 (72.0)
Unknown	5 (9.8)	1 (6.7)	0	6 (7.8)	6 (4.5)
Race					
White	28 (54.9)	11 (73.3)	8 (53.3)	46 (59.7)	93 (70.5)
Non-White	14 (27.5)	2 (13.3)	5 (33.3)	19 (24.7)	26 (19.7)
Unknown	9 (17.6)	2 (13.3)	2 (13.3)	12 (15.6)	13 (9.8)
Leukemia type, n (%)					
AML	51 (100.0)	0	11 (73.3)	62 (80.5)	114 (86.4)
ALL	0	13 (86.7)	4 (26.7)	13 (16.9)	14 (10.6)
MPAL/Other	0	2 (13.3)	0	2 (2.6)	4 (3.0)
Median prior Tx (range)	3 (1-8)	3 (1-9)	3 (1-9)	3 (1-9)	3 (1-12)
≥4 prior Tx, n (%)	16 (31.4)	5 (33.3)	7 (46.7)	26 (33.8)	44 (33.3)
Prior venetoclax, n (%)	33 (64.7)	5 (33.3)	9 (60.0)	46 (59.7)	85 (64.4)
Prior HSCT, n (%)	26 (51.0)	5 (33.3)	6 (40.0)	36 (46.8)	58 (43.9)
>1 prior HSCT	12 (23.5)	2 (13.3)	2 (13.3)	15 (19.5)	20 (15.2)

ALL, acute lymphoblastic leukemia; AML, acute myeloid leukemia; HSCT, hematopoietic stem cell transplant; *KMT2Ar*, histone-lysine N-methyltransferase 2A rearrangements; MPAL, mixed phenotype acute leukemia; *mNPM1*, mutated nucleophosmin 1. ^aData cutoff: July 24, 2023. Some patients may have had <4 months of follow-up. Two pediatric patients switched from *KMT2Ar* to *nNPM1*. Another patient's *KMT2Ar* status changed to "no" at screening. ^bIncludes all ages. ^cIncludes all leukemia subtypes.

AUGMENT-101

In Phase 1, KMT2Ar patients experienced strong response to revumenib

ASH23 #2907

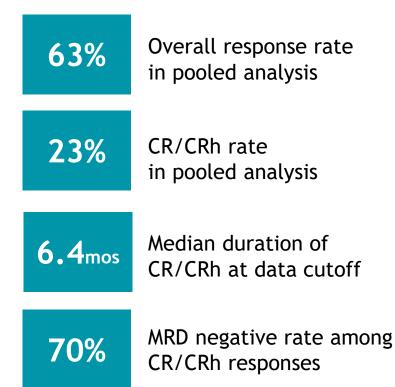

Efficacy (<i>KMT2Ar</i> acute leukemia)						
Parameter	Adult AML (n=51)	ALL/Other (n=15)	Peds (n=15)	Overall <i>KMT2Ar</i> (n=77)		
ORR, n (%)	35 (69)	8 (47)	10 (67)	50 (65)		
Best response, n (%)						
CR+CRh rate, n (%)	19 (37)	4 (27)	3 (20)	24 (31)		
CRc, n (%)	26 (51)	5 (33)	5 (33)	34 (44)		
CR	15 (29)	3 (20)	1 (7)	18 (23)		
CRh	4 (8)	1 (7)	2 (13)	6 (8)		
CRi	2 (4)			2 (3)		
CRp	5 (10)	1 (7)	2 (13)	8 (10)		
MLFS	9 (18)	2 (13)	5 (33)	15 (19.5)		
PR		1 (7)	0	1 (1)		
Other	16 (31)	7 (47)	5 (33)	27 (35)		
MRD-neg status in CR+CRh, n (%)	12/17 (71)	3/3 (100)	2/2 (100)	16/21 (76)		
MRD-neg status in CRc, n (%)	18/24 (75)	4/4 (100)	4/4 (100)	25/31 (81)		
Responders going to HSCT, n (%)	14 /35 (40)	1/8 (13)	4/10 (40)	19/50 (38)		

Safety (all patients)					
All terms	Safety pop (n=132)				
Any grade TEAE, n (%)	128 (97)				
Any grade TEAEs in ≥25% patients					
Nausea	63 (48)				
QTc prolongation	48 (36)				
Vomiting	46 (35)				
Febrile neutropenia	40 (30)				
Fatigue	38 (29)				
Diarrhea	33 (25)				
≥Grade 3 TEAE, n (%)	107 (81)				
≥Grade 3 TEAE in ≥10% patients					
Febrile neutropenia	39 (30)				
Decreased platelet count	20 (15)				
Anemia	18 (14)				
Sepsis	17 (13)				
Decreased neutrophil count	15 (11)				
Decreased white blood cell count	15 (11)				

AE, adverse event; ALL, acute lymphoblastic leukemia; AML, acute myeloid leukemia; CR, complete remission; CRc, composite CR (CR+CRh+CRp+CRi); CRh, CR with partial hematologic recovery; CRi, CR with incomplete hematologic recovery; CRp, CR with incomplete platelet recovery; HSCT, hematopoietic stem cell transplant; *KMT2Ar*, histone-lysine N-methyltransferase 2A rearrangements;

Syndax MLFS, morphological leukemia-free state; MRD, measurable residual disease; NPM1m, mutated nucleophosmin 1; ORR, overall response rate (CRc+MLFS+PR); PR, partial remission; TEAE, treatment-emergent adverse event. ^aData cutoff: July 24, 2023. Some patients may have had <4 months of follow-up. Two pediatric patients switched from KMT2Ar to NPM1m. Another patient's KMT2Ar status changed to "no" at screening. ^bIncludes all ages. ^cIncludes all leukemia subtypes. ^dIncludes no response, disease progression, and patients without postbaseline disease assessment.

AUGMENT-101: Phase 1 R/R mNPM1 patients achieve durable, MRD-negative responses with revumenib



	n (%)
Total mNPM1 @ RP2D	14
CR/CRh	5 (36%)
MRD- CR/CRh	5 (100%)
ORR	7 (50%)

- 3/7 responders proceeded to HSCT
- 1 patient restarted revumenib post HSCT*
- 3/5 of CR/CRh maintained response beyond 6 months, 2 over 22 months
- TRAEs in-line with overall AUGMENT-101 Phase 1/2 experience
 - No treatment related discontinuations
 - No Grade 4 or 5 QTc events
 - ≤ Grade 2 differentiation syndrome

AUGMENT-101 KMT2Ar data shows a high rate of durable, MRD^{neg} responses

Enables a high rate of deep, durable MRD^{neg} responses in late line R/R patients

Well tolerated, only 6% discontinued due to TRAEs

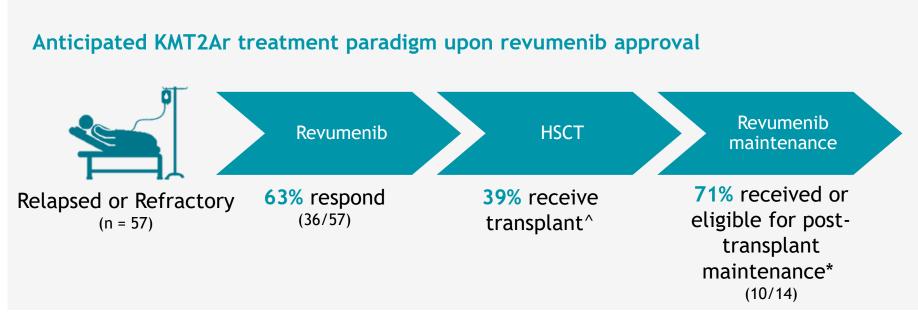
Profile supports a new treatment paradigm: HSCT followed by revumenib post-transplant maintenance

Syndax plans to complete NDA submission by year-end 2023 under RTOR

Post-transplant maintenance experience supports long-term revumenib use

ASH23 #4950

Age	# prior regimens	Prior HSCT (#) ^a	Last response reported ^b	TRAE leading to dose modification post HSCT									
22	4	Yes (2)	MRD- (BM) ^c	Decreased: leg pain	•							>	
40	1	Yes (1)	CR, MRD-	Decreased: thrombocytopenia	•							∇	
11	3	No	CR, MRD-	Held: thrombocytopenia							>		
41	1	No	CR, MRD-	None	*			>					
1.3	1	No	CR, MRD not tested	None	*		>	>					
71	1	Yes (1)	CRh, MRD+	Decreased: thrombocytopenia	*			0					
35	2	Yes (1)	Relapse	Skipped: nausea and vomiting	*			C			1T2Ar		
39	2	Yes (1)	CRh, MRD not tested	None			>			NP	M1m		
39	6	Yes (1)	CR, MRD- ^e	Skipped: hyperbilirubinemia, thrombocytopenia	*		\bigtriangledown				ration betwee	n pre- and p	ost-HSCT th
41	3	No	PD	None				0		★ CR	/CRh		
17	5	Yes (1)	CRh, MRD not tested	None			■ ^			•	p/CRi		
26	3	No	NA	Discontinued: cytopenia, diarrhea			+				LFS ogressive disea	aca/Dicaaca	rolonco
55	2	Yes (1)	CRp, MRD not tested	Skipped: thrombocytopenia		■,^					ngoing at data		relapse
57	1	Yes (1)	CRi, MRD-	None		u					lverse event		
5	2	No	CR, MRD not tested	None	×		> [ysician decisio		
56	1	No	CR, MRD not tested	None	×	′	>			U Pr	ohibited conco	omitant med	ication
				Duration of therapy (weeks)	0 2	20	40	60	80	100	120	140	160

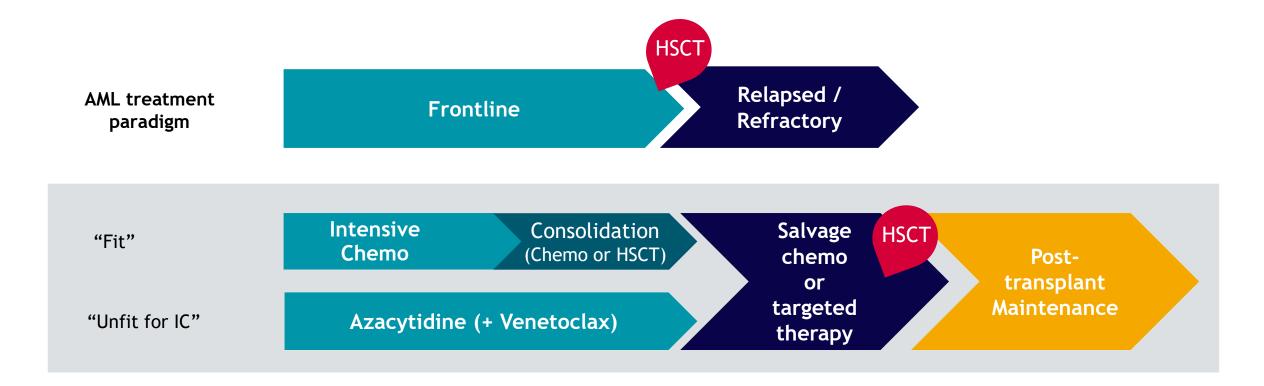

3 patients treated beyond 2 years, 1 discontinued after 2 years of post-transplant maintenance and remains in remission

Syndax 🌮

^aAll patients went on to HSCT/CD34 infusion after response to on-study revumenib. ^bLast response reported while on revumenib or prior to new antileukemic therapy. ^cIsolated CNS relapse

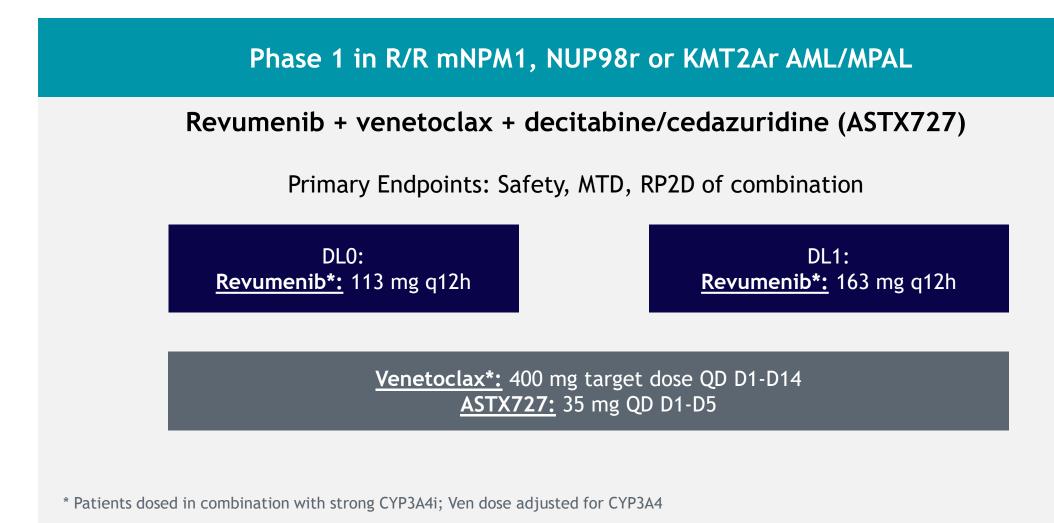
Thought leaders indicate revumenib may change the treatment paradigm for R/R KMT2Ar acute leukemia

ASH23 #4950



^ 8 of 14 patients went to transplant without achieving a CR or CRh

* 7 patients received post-transplant maintenance, 3 remained eligible to choose post-transplant maintenance as of data cut


Revumenib induces MRD- complete responses, supports high rates of stem cell transplant and long-term post-transplant maintenance

Revumenib is evolving the AML treatment paradigm

SAVE AML: Revumenib plus Ven/HMA combo in R/R mNPM1, NUP98r or KMT2Ar AML/MPAL

ASH23 #58

100% ORR for patients treated with Revumenib/Venetoclax/Decitibine

ASH23 #58

	Summary of Enrolled Patients & Response Data							
				N (%)	Subtype			
	Total enrolled		Total enrolled 9				KMT2Ar: 5; mNPM1: 1 NUP98r: 3	
	Median prior Tx		in prior Tx	3	55% received prior VEN 67% received prior HSCT			
	Best response		response		Subtype			
		OR	R	9 (100%)	KMT2Ar + NUP98r + mNPM1			
CR	C	ſ	CR / CRh*	4 (44%)	3 KMT2Ar + 1 NUP98r			
78	%	l	CRp	3 (33%)	1 mNPM1 + 2 KMT2Ar			
			MLFS	1 (11%)	1 NUP98r			
			PR	1 (11%)	1 NUP98r			
		MR	D ^{neg} (MFC)	6 (67%)	* 100% MRD ^{neg} CR/CRh			

• 100% Response rate in heavily pre-treated pts

- 67% received prior HMA and/or prior HSCT
- 56% of patients enrolled in SAVE had relapsed on prior venetoclax therapy

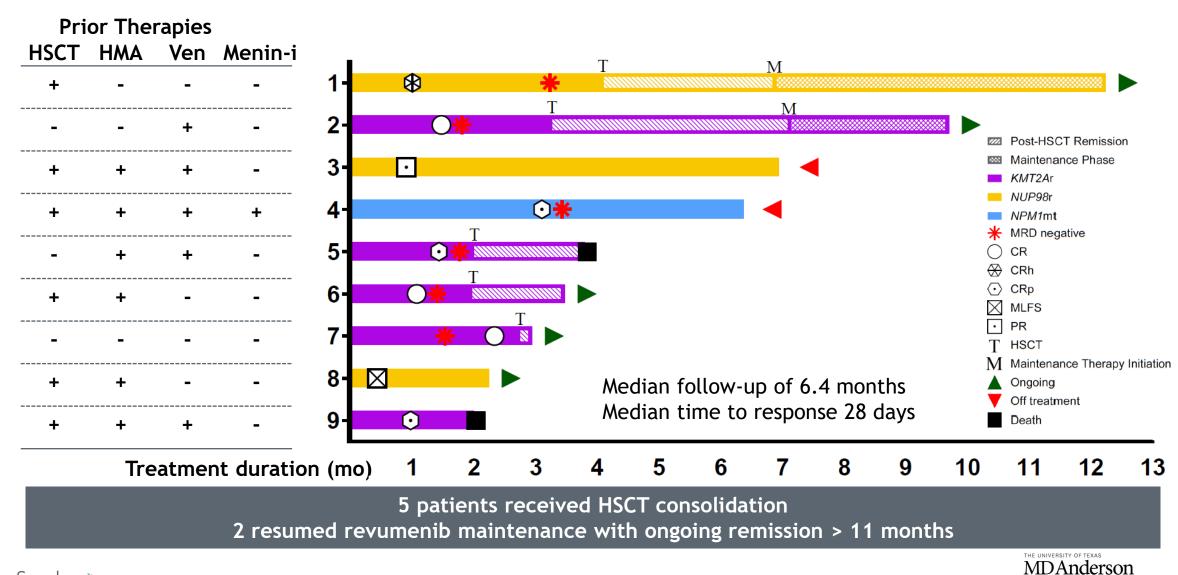
• 67% MRD^{neg} rate, with 100% MRD^{neg} in CR/CRh

- Expected rates venetoclax-naïve R/R AML:
 - CRc \leq 50%
 - ORR $\leq 60\%$

1. Maximilian Stahl et. al, Clinical and molecular predictors of response and survival following venetoclax therapy in relapsed/refractory AML, Blood Adv, 2021, 2. Jonas, B.A., Pollyea, D.A. How we use venetoclax with hypomethylating agents for the treatment of newly diagnosed patients with acute myeloid leukemia. Leukemia 33, 2795-2804 (2019) 3.ASH2023 abstract #833 A Phase 2 Study of the Fully Oral Combination of ASTX727 (Decitabine/Cedazuridine) Plus Venetoclax for Older and/or Unfit Patients with Acute Myeloid Leukemia; 4.Curtis A. Lachowiez, et al, A Phase Ib/II Study of Ivosidenib with Venetoclax ± Azacitidine in IDH1-Mutated Myeloid Malignancies Blood Cancer Discov (2023) 4 (4): 276-293. 5. Advisory board discussion

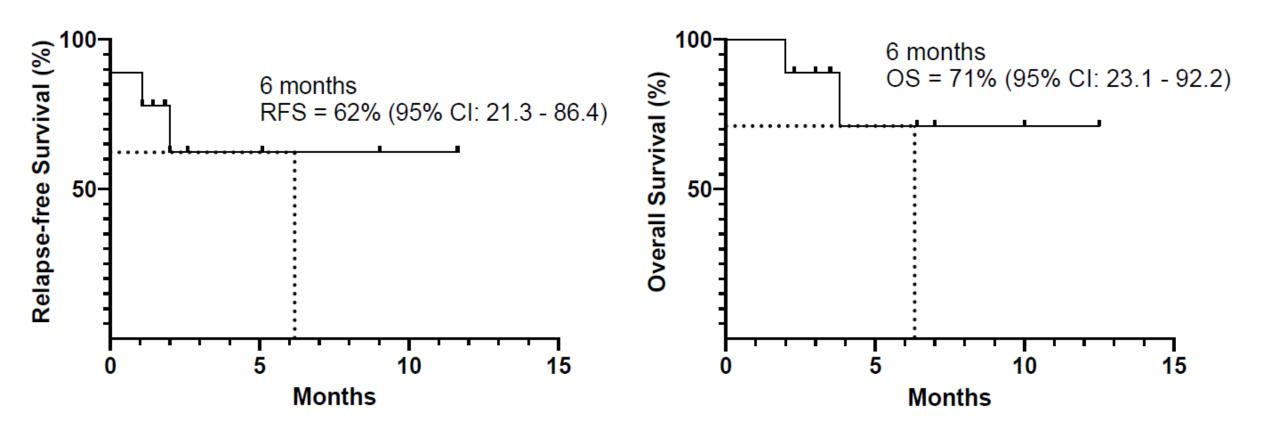
SAVE AML supports favorable safety and tolerability profile of all-oral revumenib-venetoclax-decitabine/cedazurine combo in R/R acute leukemia ASH23 #58

SAVE trial safety summary					
Treatment Related AEs	All Grades in ≥25%	Grade ≥3			
Hyperphosphatemia	56%				
Nausea	56%				
Febrile neutropenia		56%			
Vomiting	44%				
QTc prolongation	33%				
Differentiation Syndrome	22%				
Thrombocytopenia		22%			
Neutropenia		22%			
Lung infection		22%			


- No discontinuations for TRAEs, No ≥ Gr 3 QTc
- Myelosuppression comparable to venetoclax-HMA
- No new safety signals observed beyond those reported for venetoclax-HMA

Data Cutoff Nov 01, 2023

1. DiNardo, C. D., Thirman, M., et al., Safety and preliminary efficacy of venetoclax with decitabine or azacitidine in elderly patients with previously untreated acute myeloid leukaemia: a non-randomised, open- 50 label, phase 1b study 2018 Vol 19, Issue 2, p216-228

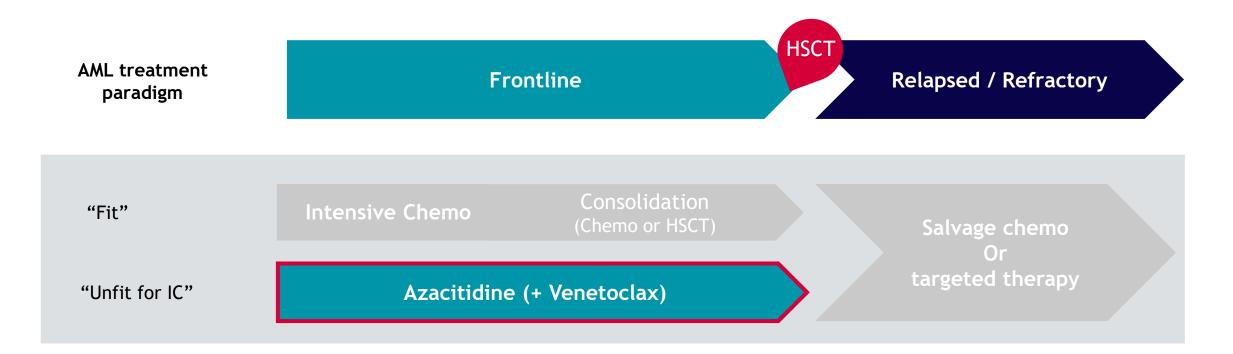

SAVE AML leads to rapid responses in refractory cases

Syndax >> Data Cutoff Nov 01, 2023

Cancer Center

SAVE AML early results indicate durable remissions

Median RFS and OS not reached with 2 patients having ongoing remission beyond 11 months



BEAT AML Trial Results

Dr. Joshua Zeidner, MD

Associate Professor of Medicine, Chief, Leukemia Research, University of North Carolina, Lineberger Comprehensive Cancer Center

BEAT-AML and Syndax partnered on frontline SOC combos based on strong efficacy and tolerability observed in relapsed / refractory patients

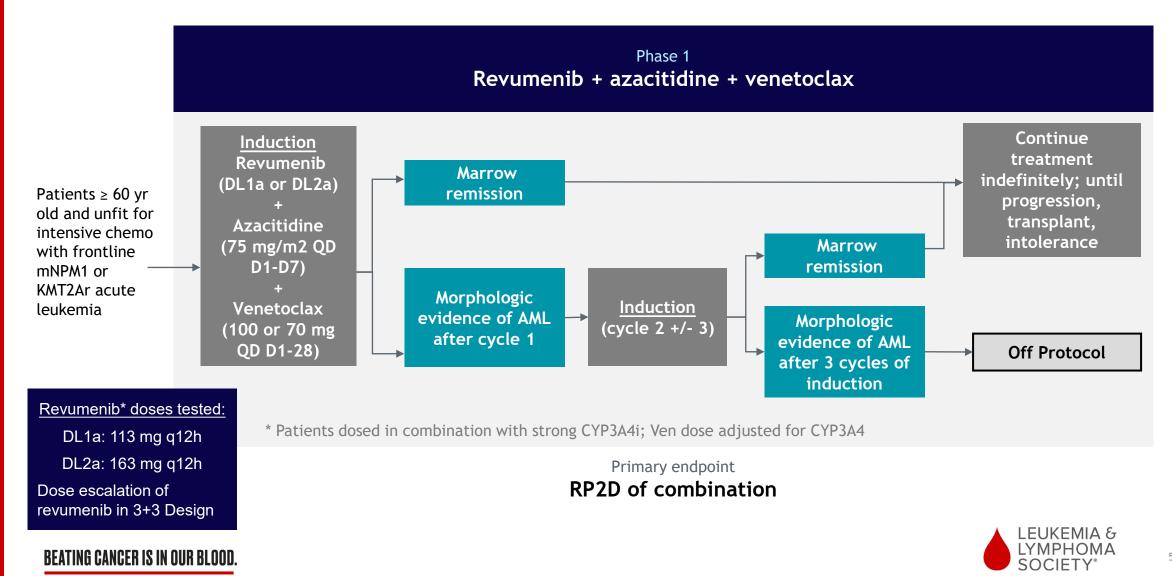
VIALE-A trial establishes the SOC for treatment of newly diagnosed AML patients unable to tolerate intensive chemotherapy

VIALE-A: Ph3, RCT to evaluate the efficacy and safety of azacitidine plus venetoclax vs azacitidine alone

- Median Overall Survival -- 14.7 mo (Primary Endpoint)
- Composite Complete Remission (CRc) -- 66.4% (Key Secondary Endpoint)

Azacitidine-Venetoclax Group	Safety analysis set (n=283)			
Event	All Grades†	≥ Grade 3‡		
All adverse events	283 (100)	279 (99)		
Hematologic adverse events	236 (83)	233 (82)		
Thrombocytopenia	130 (46)	126 (45)		
Neutropenia	119 (42)	119 (42)		
Febrile neutropenia	118 (42)	118 (42)		
Anemia	78 (28)	74 (26)		
Leukopenia	58 (21)	58 (21)		

In VIALE-A, VEN/AZA group:


- Observed a higher incidence of dose interruptions to allow for hematologic recovery
- The majority of patients who received azacitidine-venetoclax (53%) had modifications to the duration of venetoclax
- Used bone marrow assessments to promote appropriate interruptions in venetoclax between treatment cycles to augment hematologic recovery

* The safety population included all patients who received at least one dose of azacitidine-venetoclax or azacitidine-placebo.

† Adverse events reported in at least 20% of patients in either treatment group are listed.

‡ Adverse events of grade 3 or higher that were reported in at least 10% of patients in either treatment group are listed.

BEAT AML: Revumenib +Ven/Aza combo in frontline mNPM1 or KMT2Ar AML

BEAT AML patient demographics

	Dose Level 1a n = 7	Dose Level 2a n = 6	Total n = 13
Median Age (yrs), (range)	67 (61-85)	75 (65-84)	73 (61-85)
Age ≥75 years, % (n)	43% (3)	17% (1)	4 (31)
Gender, % M	14%	83%	46%
NPM1 mut, % (n)	57% (4)	66% (4)	62% (8)
KMT2Ar, % (n)	43% (3)	33% (2)	38% (5)
BM Blasts, % (range)	67% (15-84)	58% (21-82)	60% (15-84)

Newly diagnosed mNPM1 or KMT2Ar AML patients achieved CRc within 1-2 cycles of induction with the triplet combination of rev-ven-aza

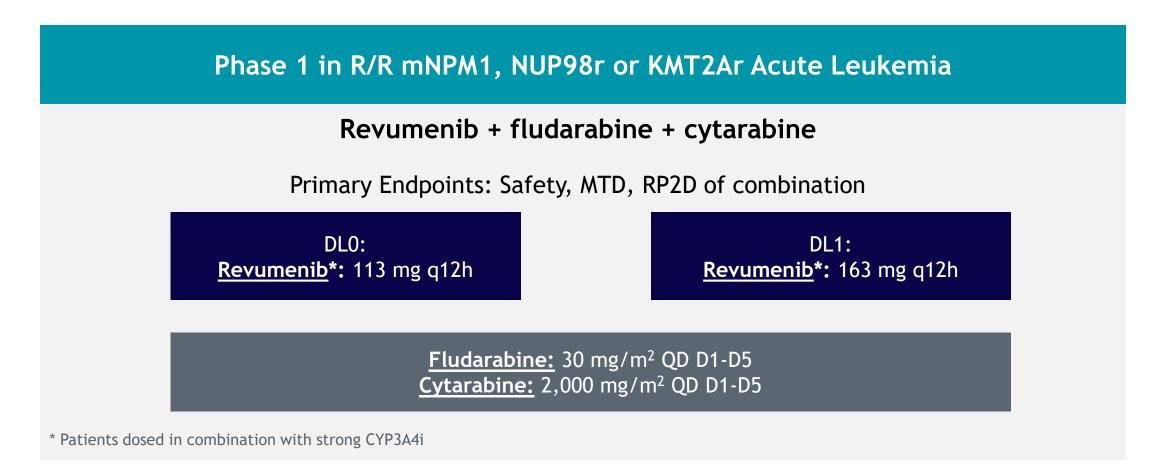
	113 mg q12h Dose Level 1a			163 mg q12h Dose Level 2a		
	KMT2Ar	mNPM1	KMT2Ar	mNPM1	(DL1a + DL2a)	
Total # Patients	3	4	2	4	13	
<u>Best Response</u> CRc CR/CRh CRi	3 (100%) 2 (67%) 1 (33%)	4(100%) 3 (75%) 1 (25%)	2 (100%) 2 (100%) 	4 (100%)* 4 (100%)* 	13 (100%) 11 (85%) 2 (15%)	
<u>MRD flow status</u> Negative Unk	3 (100%) 	3 (75%) 1 (25%)	2 (100%) 	4 (100%) 	12 (92%) 1 (8%)	
Transplant		1	1		2	
Relapse	1				1	

BEAT-AML safety and status

- Cytopenias manageable with continuous dosing of venetoclax and full dose revumenib
 - 1 Hematologic DLT observed in DL1a: platelets exceeded 42 days to recover, no other DLTs across both dose levels
- 4/13 (31%) patients experienced differentiation syndrome; 8% Grade 3, 15% Grade 2, 8% Grade 1
- 4/13 (31%) patients experienced QTC prolongation managed without dose reductions; 8% Grade 3, 15% Grade 2, 8% Grade 1

No increased safety issues outside of known reported ven/aza toxicities

- Triplet has cleared DLT window for both revumenib dose levels
- Cohort expansion planned to validate RP2D
- Data to be presented at an upcoming medical meeting



AUGMENT-102 Trial Results

Dr. Neerav Shukla, MD Chief, Pediatric Translational Medicine Service at Memorial Sloan Kettering Cancer Center

AUGMENT-102: Revumenib plus FLA combo in R/R mNPM1, NUP98r or KMT2Ar AML

Enrolled heavily pretreated pediatric KMT2Ar patients including multiply relapsed KMT2Ar infant leukemia

Safety and tolerability data observed with fludarabine-cytarabine (FLA) combinations in patients with R/R AML

First relapse or primary refractory Pediatric AML treated with FLAG¹

Grade 3 or 4 toxicity	n = 175
Anemia	89 (51%)
Neutropenia	98 (56%)
Thrombocytopenia	98 (56%)
Severe infection	31 (18%)

FLAG = fludarabine, cytarabine, granulocyte colony-stimulating factor

<u>First relapse</u> adult AML with leukemia following 1 course of mitoxantrone-etoposide treated with FLA²

Grade 3 or 4 toxicity	n = 18
Neutropenia (Gr 4)	18 (100%)
Febrile neutropenia	18 (100%)
Thrombocytopenia (Gr 4)	18 (100%)

FLA = fludarabine, cytarabine

Chemotherapy is associated with high levels of hematological toxicity

AUGMENT-102 shows benefit in chemo combo (FLA) in late line R/R KMT2Ar, mNPM1 or NUP98r AML without added AEs

Demographics				
Total evaluable	DL1 (N=3)	DL2 (N=12)		
Median age (range)	20 yrs (0.75,29)	4 yrs (1,37)		
Median prior therapies	3 (3,3)	4 (1,18)		
AML/ALL	2/1	12/0		
KMT2Ar/mNPM1 /NUP98r	3/0/0	10/1/1		

Efficacy Results				
Total evaluable	DL1 (N=3)	DL2 (N=12)		
CRc	1 (33%)	4 (33%)		
CR		3 (25%)		
CRi	1 (33%)	1 (8%)		
Undergo HSCT		4*		

Safety summary

Gr ≥3 revumenib treatment-related AEs	% N=15
Platelet count decreased	53%
White blood cell count decreased	40%
Anemia	33%
Febrile neutropenia	27%
Neutrophil count decreased	27%
Lymphocyte count decreased	20%

Late line, predominantly pediatric population

• 50% had failed FLA prior to enrollment

Encouraging efficacy results

 Patient receiving post-HSCT maintenance remains in response >10 mos

AE profile consistent with intensive chemo in R/R AML

• No TRAE's leading to dose reduction or discontinuation

AUGMENT-102 Summary

AUGMENT-102 Phase 1 trial examined the safety of revumenib in combination with standard AML salvage chemotherapy (FLA - fludarabine-cytarabine)

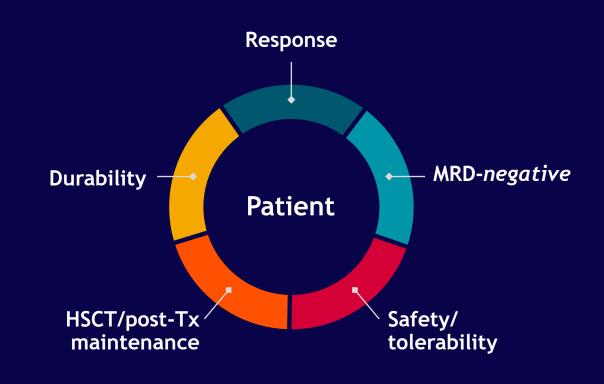
- AE profile was consistent with intensive chemo in R/R AML
- 50% of patients in the trial already failed prior FLA
- 33% CRc rate exceeded the expected rate in heavily pretreated AML

Data from expansion cohorts to support the RP2D are expected in 2024

Based on the AUGMENT-102 results, PedAL consortium is planning a Phase 2 trial in early-first relapse pediatric KMT2Ar leukemia

Close and Q&A

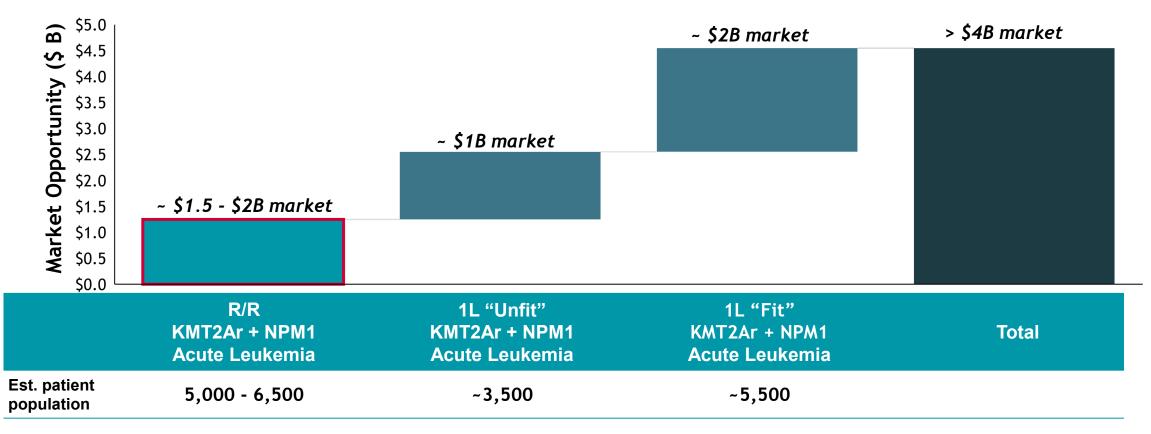
Michael Metzger Chief Executive Officer, Syndax


Revumenib is a potential first- and best-in-class therapy for KMT2Ar and mNPM1 acute leukemia

Positive monotherapy results to date:

- Clinically meaningful efficacy data in R/R KMT2Ar acute leukemia; mNPM1 results consistent with KMT2Ar
- Durable responses observed in post-transplant maintenance, even in heavily pretreated patients
- FDA submission for KMT2Ar acute leukemia under RTOR expected to complete by YE23; mNPM1 data expected 4Q24

Combination results to date show revumenib has a favorable safety and efficacy profile:


- In combination with ven-HMA in both frontline and R/R AML and includes an increased frequency of MRD^{neg} and CRc
- In combination with FLA chemo combo in R/R pediatric patients, including those who relapsed on FLA

Revumenib delivers on key metrics that address the needs of patients and drive physician utilization

Revumenib's profile supports use as backbone therapy across treatment continuum – providing access to >\$4B US market opportunity

Significant growth potential with indications in earlier lines of treatment

